The groundwater geochemistry of the Bengal Basin: Weathering, chemsorption, and trace metal flux to the oceans
نویسندگان
چکیده
Sixty-eight groundwater samples from the Ganges-Brahmaputra floodplain in the Bengal Basin were analyzed to assess the groundwater geochemistry, the subsurface hydrology, the buffering effects of sediments on trace metal concentrations and their isotopic compositions, and the magnitude of the subsurface trace element flux to the Bay of Bengal and to the global ocean. Samples obtained from depths of 10 to 350 m were measured for major and trace elements, dissolved gas, and tritium. On the basis of the He/H ages, the groundwater at depth (30–150 m) appears to be continually replenished, indicating that this recharge of groundwater to depth must ultimately be balanced by a significant quantity of submarine discharge into the Bay of Bengal. Using the He/H groundwater age–depth relationship to calculate a recharge rate of 60 20 cm/yr, we estimate a subsurface discharge into the Bay of Bengal of 1.5 0.5 10 m/yr, or 15% of the surface Ganges-Brahmaputra river (GBR) flux. Several trace elements, especially Sr and Ba, display elevated concentrations averaging 7 to 9 times the surface GBR water values. The submarine groundwater fluxes of Sr and Ba to the oceans are 8.2 2 10 and 1.5 0.3 10 mol/yr, or 3.3 and 1.2%, respectively, of the world total, or equal to the surface GBR Sr and Ba estimated fluxes. Our groundwater flux for Ba agrees with the estimate of Moore (1997) (3 10–3 10 mol/yr), on the basis of measured Ba and Ra excesses in the Bay of Bengal. Other trace metals, such as U and Mo, are at low but measurable levels and are not major contributors to the global flux in this river system. A comparison of the Sr and Ba concentrations, plus Sr/Sr ratios in groundwater to the oxalate extractable fractions of a coastal sediment core, suggests that weathering of carbonates and minor silicates, coupled with cation exchange plus adsorption and desorption reactions, controls the trace element concentrations and Sr/Sr isotopic compositions in both the groundwater and river water. Our data also imply that other coastal floodplains (e.g., the Mekong and the Irrawaddy rivers) that have high precipitation rates and rapid accumulation of immature sediments are likely to make significant contributions to the global oceanic trace metal budgets and have an impact on the Sr isotopic evolution in seawater. Copyright © 2003 Elsevier Science Ltd
منابع مشابه
Lake Hydro Geochemistry: An Implication to Chemical Weathering, Ion-exchange Phenomena and Metal Interaction
Present study aims to unravel the hydro geochemical interaction of sediment and water of Saheb bandh lake, West Bengal, India with an emphasis on heavy metal assessment. Lake water belongs to Ca2+–HCO3− type hydro geochemical faces and water-rock interaction primarily controls the lake water chemistry. Based on different Hydro chemical characteristics it is suggested that silicate weathering is...
متن کاملLake Hydro Geochemistry: An Implication to Chemical Weathering, Ion-exchange Phenomena and Metal Interaction
Present study aims to unravel the hydro geochemical interaction of sediment and water of Saheb bandh lake, West Bengal, India with an emphasis on heavy metal assessment. Lake water belongs to Ca2+–HCO3− type hydro geochemical faces and water-rock interaction primarily controls the lake water chemistry. Based on different Hydro chemical characteristics it is suggested that silicate weathering is...
متن کاملPetrography and Geochemistry of the Upper Jurassic Siliciclastic Rocks Equivalent to the Mozduran Gas Reservoir in the Eastern Kopet-Dagh Basin, NE Iran
In this research, petrographic and geochemical (major and trace elements) characteristics of siliciclastic rocks of the Mozduran Formation in the eastern Kopet-Dagh Basin have been carried out in order to reveal their provenance such as source area paleoweathering, parent rock composition and tectonic setting. Mozduran Formation is mainly composed of limestone and dolomite, with minor amounts o...
متن کاملGeochemistry of Major, Trace, and Rare Earth Elements in Biglar Permo-Triassic Bauxite Deposit, Northwest of Abgarm, Ghazvin Province, Iran
Biglar Permo-Triassic bauxite deposit is located in ~15 km northwest of Abgarm, southwest of Ghazvin province, west of central Iran. It consists of 8 stratiform and discontinuous bauxite lenses lying along the contact of Ruteh (Permian) and Elika (Triassic) carbonate formations. Petrographically, the bauxite ores exhibit collomorphic-fluidal, pseudo-breccia, pseudo-porphyritic, panidio-morphic-...
متن کاملLarge groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record.
Strontium concentration and isotopic data for subsurface flowing groundwaters of the Ganges-Brahmaputra (G-B) delta in the Bengal Basin demonstrate that this is a potentially significant source of strontium to the oceans, equal in magnitude to the dissolved strontium concentration carried to the oceans by the G-B river waters. The strontium concentrations of groundwaters are higher by a factor ...
متن کامل